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Abstract

CYCLES is a computer program that computes the fatigue reliability
of mechanical components. It includes a rather flexible model of uncer-
tainty, both in distribution parameters of randomly varying quantities
(e.g., load environment parameters such as wave height, wind speed, etc.)
and in uncertain material properties (e.g., S—N fatigue properties). The
formulation is intended to be of general applicability across a range of
fatigue problems. Applications are shown here to offshore structures and
wind turbines, both of which may experience fatigue problems.

These models are efficiently analyzed through FORM/SORM tech-
niques (first- and second-order reliability methods). A simple, analytical
g-function (limit state) is established, which may be directly incorporated
into standard FORM/SORM software packages.

We describe here one such code, which includes a 24-variable formu-
lation, its capabilities, input parameters, and output. Fatigue reliability
results are shown from this code for both wave and wind applications, in-
cluding failure probability variation across a range of target fatigue lives.




Chapter 1

Introduction and Background

Fatigue life estimates for structures and mechanical components are known to be
highly variable, particularly at early stages of design. It may be unreasonable at
this stage to seek a single precise estimate of fatigue life. Indeed, such an estimate
might show considerable variability across a range of environmental and structural
modelling assumptions. This suggests that any such number should be reported
with an appropriate range of uncertainty, reflecting both natural uncertainty and our
professional ignorance of precise structural behavior, mechanical fatigue laws, and so
forth. This in turn suggests that the proper question may not be “what is the actual
fatigue life of this component?”, but rather “with what confidence will the component
meet its target design life?” ‘Such questions are naturally addressed by the theory of

structural reliability.

We present a formulation of the fatigue damage problem that considers this ques-
tion. It is by no means the most complex or detailed model that can be established,
but we believe it represents a useful compromise between its level of detail in me-
chanical and probabilistic modelling, and our state of knowledge. It produces a
convenient, analytical form of the limit-state (“g—function”), which can be directly
analyzed through any of the various FORM /SORM computer codes that are currently

available.

This fatigue formulation is intended to capture uncertainty in environmental load-

ing, gross structural response, and local fatigue properties. Fatigue damage is modeled
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2 Chapter 1. Introduction and Background

probabilistically using Miner’s Rule and the effects of variable loads, mean stress ef-
fects, stress concentration factors, and uncertainty in the fatigue properties themselves
are included. A critical distinction here is between continuously varying quantities
such as an environmental parameter (e.g., significant wave height Hg, mean wind
speed V, applied stress level S versus time, etc.) and fixed parameters which may
be uncertain (e.g. fatigue law coefficients, distribution parameters of Hg, V, S given
either Hg or V, etc.). Continuously varying quantities are reflected here implicitly,
through their average effect on fatigue damage. In contrast, parameter uncertainty
doesn’t “average out” over fatigue life, and is modelled here explicitly.

This fatigue formulation is also intended to be of rather general applicability. It
has first been developed (Veers, 1990) and since extended at Stanford with wind
turbine applications in mind, but we believe it may be equally useful for offshore
applications. Examples are shown here for both wave and wind applications.

The next chapter provides a detailed description of the formulation used to com-
pute fatigue damage and therefore component lifetime. A brief description of the
solution methods employed by the program is presented for completeness.

The remainder of this documentation describes the program CYCLES and its
required input and output. Sample problems illustrating the program"s' capabilities
are included. Appendices A and B contain the program output for the two sample

problems discussed in Chapters 5 and 6, respectively.

1.1 Version history

The following is a list of the differences between versions 1.0 and 2.0 of CYCLES:

1. Version 2.0 of CYCLES permits the inclusion of two environment variables
X, and X;, as compared with only one environmental variable in Version 1.
For marine structures, these dual attributes may be X,=Hg and Xo=Tp, the
significant wave height Hs and peak spectral period Tp of a steady-state seast-

ate. For wind response we may instead choose X ,=V=mean wind speed, and

X,=I=turbulence intensity parameter.
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. In version 2.0, the cyclic stress amplitude S (given environment variables X,

and X») can be modeled with any of a number of two-parameter distribution
types, or as a three-parameter quadratic Weibull type which can match three
moments of S given X; and X,. Version 1.0 supported only a Weibull model

for the conditional stress S, given the single environmental variable X.

. New features have led to an increase in the number of random variables in

Version 2.0 to 24, as compared with 14 random variables in Version 1.0.

. The input format has been simplified in Version 2.0.

. The distribution library of CYCLES 2.0 contains more distribution types. Ad-

ditions in Version 2.0 include Exponential, Gumbel, and Quadratic Weibull

models, as well as shifted versions of each of these.

. Due to its additional complexity per run, CYCLES 2.0 does not automatically

perform either (a) the sensitivity analyses or (b) the multiple target lifetimes
within a single run, as did CYCLES 1.0. If desired, these quantities can be
calculated through several runs of CYCLES 2.0.
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Chapter 2

General Fatigue Formulation

Whether we consider fatigue or an alternate failure condition, a complete reliability

formulation generally includes uncertainty in three distinct aspects:
1. The loading environment characterized here by random variables
2. The gross level of structural response given the load environment

3. The local failure criterion given both both the load environment and the gross

stress response

" For the fatigue limit state we examine each of these in turn below, along with the

modelling capabilities CYCLES 2.0 affords for each.

2.1 Load Environment

Characterizing variables: X;, X; = dominant environmental parameters
For the subsequent analysis, we assume the load environment is well characterized
by two controlling random variables, herein denoted X; and X, for generality. We
therefore require their joint probability density function, fx, x,(z1,2), as input to
the fatigue reliability analysis. In this formulation we require the user to specify the
marginal densities fx,(z1) and fx,(z2) of Xi and X, and the correlation coefficient,
Px,.x,, between the two. These quantities can commonly be estimated from site-

specific environmental data.




6 Chapter 2. General Fatigue Formulation

For offshore problems we may typically take X,=Hg, the significant wave height
and Xo=Tp, the peak spectral period during a period when the wave elevation pro-
cess 7)(t) can be assumed to be stationary (i.e., in a statistical steady-state condition).
Following common convention, we define Hg=40,, that is, 4 times the standard de-
viation (rms) of the wave elevation process. It is also roughly equal to the mean of
the highest one-third of all wave heights (peak-trough distances), provided the com-
mon Gaussian model of 7(t) is assumed to hold. For wind, X,=V, some measure of
average wind speed and X, = I, some measure of turbulence intensity (ratio of rms

to mean wind speed) over a reference period, and at a reference elevation.

In CYCLES 2.0, each of the marginal densities fx,(z1) and fx,(z2) can take on
forms consistent with any of the twd-parameter distribution types listed in Table 4.1.
(Note that in principle, the methodology permits any distribution in the CYCLES
library—whether it has two or more parameters—to be used to model X1 and Xo.
Our limitation here to two-parameter distribution types is to simplify not the method
but rather the input. Because we assign two-parameter distribution types to each X
and X,, we require only the mean value and the coefficient of variation (COV) of
each of these variables.

Resulting uncertain quantities: 7;, Vxl,_)_(—z, Vx,=mean and coefficient of varia-
tions of the environmental parameters X;, X, (wave height and wave period, wind
speed and turbulence intensity, etc.).

Resulting fixed parameters: The correlation coefficient px, x, between X; and
X,; the distribution type indices idistx1 and idistx2 that define the distributions

of X; and X, respectively, from the available choices in Table 4.1.

2.2 Gross Response

Characterizing Variable: S=amplitude of local stress process.

The stress response at the location of interest will typicé,lly not be regular (i.e.,

sinusoidal). Nonetheless, we assume that some method, such as rainflow counting,
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is available to identify amplitudes of equivalent stress “cycles.” Statistics of an ar-
bitrarily chosen amplitude S will generally depend on the underlying environmen-
tal variables X;, X2. Thus we generally require the conditional probability density
fsixa, x,(8|z1, T2), over all possible values of the environmental variables z, z.
Given the load environment X; and X3, CYCLES 2.0 permits the stress ampli-
tude S to be modeled with any one of the two-parameter distribution types listed iﬁ
Table 4.1, or with a three-parameter quadratic Weibull model. These two-parameter
distributions can generally preserve the first two moments of S, while the quadratic
Weibull can be tuned to match rather general values of the first three moments of

S. The moments of the stress are assumed to vary, given X;=z; and Xy=2z9, in

wi(z1, T2) = o (-""1—> (-”-”2—> (2.1)

xlref x2ref
where p;, for i = 1,2, 3, refers respectively to the mean, COV, and skewness of the

power-law fashion:

stresses. The quantities z; , and z,,, denote reference values for z, and z, chosen
here for convenience as the geometric means of the data. For example, if z; has

observed values z1;...T1, its geometric mean is defined as

I, . = [:vu...:cln]l/“ (22)

ref

The quantity T, is defined similarly. Use of these reference values in Eqn. 2.1 ensures
that linear regression, applied to the logarithm of this equation, yields estimates of
ag;, G1i, and ag; that are mutually uncorrelated. Similarly, the average stress cycle
rate fqyg is assumed to follow a similar power-law variation with z; and z5:
fang(@1,72) = fo (—”l—) ’ (—””—2—) ’ (23)
Tlret T2ret
in terms of the same reference values z, ., and T, and the new coefficients fo, f1,
and fo.
The true values of these parameters, a;; and f; for terms 0 < j < 2 and moments
1 < i < 3, remain uncertain due to limited data. CYCLES 2.0 permits each of these 12
parameters to be modelled as random variables, whose means and standard deviations
can be estimated from standard regression techniques. Any of the distribution types

in Table 4.1 can be assigned in CYCLES 2.0 to each aj; and each f;.
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Resulting uncertain quantities: Twelve values, estimating the 9 parameters a;;
and 3 parameters f; (0<j<2and1 <1< 3) arising in Eqn. 2.1 and Eqn. 2.3.

Resulting fixed parameters: The reference values z,,, and z,, and the dis-
tribution index idist;s defining the distribution of S|Xi, X,, from among any of

the two-parameter distributions in CYCLES 2.0 or the three-parameter, quadratic
Weibull model.

2.3 Failure Measure

Characterizing Variable: D=mean value of Miner’s damage.

We assume that fatigue tests at constant stress amplitude S are available to es-
timate the “S—N” curve'; that is, the number of cycles Ny (s) to failure as a function
of stress amplitude s. Miner’s rule is then used, assigning damage 1/Nf(S;) due to
a single stress at amplitude S;. We assume here that this damage grows linearly at
its mean rate D, ignoring local variations in this rate due to variability in the cyclic
amplitudes S;. (This will tend to average out quickly for the high-cycle fatigue ap-
plications of interest here.) As a result, fatigue behavior is characterized by only the
mean damage rate D, and hence by only the “S-N” curve N¢(S).

Specifically, CYCLES 2.0 takes the S—NV curve as a straight line on log-log scale,

with an effective intercept Cy that includes the Goodman correction for mean stress

effects:

-b
Ny(S)=C (T:_I?%m) =CoS7% Co=C(1- KSm/S,,)" (2.4)
in which S,, and S, are the mean and ultimate stress levels.

Resulting uncertain quantities: Five parameters in general: the S-N parameters
C and b, the stress concentration factor K, and the mean and ultimate stress levels,
S, and S,. In practice it is common to fix b (and then estimate C from the data);
alternatively, if C and b are both considered as uncertain, their estimates are generally

correlated. (CYCLES 2.0 permits general correlation coefficients among these and

other pairs of uncertain variables).
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2.4 Limit State Evaluation

Characterizing Variable: Safety margin M=Excess time to fail beyond
service life.

To summarize from the previous sections, the general fatigue formulation requires
three functional inputs: fx, x,(Z1,Z2), fs| X1.%(8]z1,22), and Ny (s) fo characterize
the load, response, and fatigue damage respectively. A convenient scalar quantity on
which to focus is the mean damage D. This is found by integrating/summing over

all load and response levels, z1, T2 and s:

av z ’x
/ / "4 g( 1 2)fslxl,x2(8|:c1,xz)fxl,x2($1,$2)d3 dridz;  (2.5)
z1=0 Jz2=0 §=0 )

The average frequency, favg(Z1,72) from Eqn. 2.3, is used here to convert the damage
1/N;(S), per cycle, to a corresponding damage per unit time.

In general, Eqn. 2.5 can be evaluated numerically, permitting arbitrary functional
forms for fx, x,(%1,%2), fsix1,x2(5]71,%2), and Nj(s). It is convenient (though not
essential) to specialize here to the single power-law S—N curve, N +(S)=CpS~?, from

Eqn. 2.4. In this case Eqn. 2.5 can be rewritten as

—_ 1 00
D= oA / / faug(thZz)E[Sbl X, = 11, Xo = T2)fx, %, (Z1, T2)dz1 dzo  (2.6)
0 J21=0 Jz2=0
in which

00
E[Sbl Xl =T, Xg = .’L‘g] = /3 Osbfg|xl’x2(8l$1,$2)d3 (27)

Once obtained, D can be used to directly estimate the fatigue life Ty. We assume
that after the many cycles that contribute to high-cycle fatigue, the actual damage
varies negligible from its average value D. If we assume that failure occurs when this
damage reaches a critical threshold A, and that the component experiences fatigue
loads over a fraction A (availability) of its service life, its failure time is then estimated
as

1= 22 (2.8)
If Miner’s rule is considered exact we would assign A=1. More generally, variability in

A would reflect inaccuracies in Miner’s rule; i.e., the scatter resulting from predicting
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variable-amplitude fatigue lives from constant-amplitude tests. Finally, the fatigue

safety margin M is defined as in Eqn. 3.1, repeated here for convenience:
M=T,-T,= 221, (2.9)
D
Resulting uncertain quantities: The damage threshold A, the availability fraction
A, and the target service life T. '
Resulting fixed parameters: The integer values nquadx1 and nquadx2, which de-
fine the number of quadrature points used to evaluate the double integral in Eqn. 2.6.

Specifically, that equation is evaluated by a double sum of the form

1 nquadzl nquads2

& Z Jzz:l pij * (fa,,gE[Sb]) 21, 22 = (€1, €2)ij (2.10)

i=1

D=

in which (£, &2)i; is the location of the i—j quadrature point approximating the con-
tinuous density f(z,2), with associated probability weight p;;. These points are
obtained from standard Gaussian quadrature points for a standard normal variable
U. If X, and X, are independent, each variable is separately related by a standard

normal through its distribution function:
X; = Fx(Ui) (2.11)

This relation is then applied at each Gauss quadrature point, to transform its location
to reflect the marginal probability distribution of each X;. If X; and X, are also

correlated, a final step rotates the quadrature points of X, to reflect this trend in the

bivariate density f(z1,Z2).




Chapter 3

Solution Algorithm for Failure Probability

For the reliability analysis the failure criterion is taken to be the difference between

the computed fatigue life (Eqn. 2.8) and a specified target lifetime, T3:
GY1.Y,)=Ts-T, (3.1)

Equation 3.1 is known as the limit state function, which when negative indicates
inadequate structural performance (“failure”). The Y; denote the set of all physical
variables—here, n=24—that are uncertain (or random). These physical random vari-
ables are commonly denoted as X;; here we choose Y; to avbid confusion with the
continuously varying environmental variables X and X, defined earlier.

The solution for the failure probability is a three step procedure that is described
here briefly for completeness. A more thorough description of reliability methods can
be found in [7] and other references. The three steps are transformation, approxima-
tion, and computation.

The transformation requires that each physical random variable, Y}, be associated
with an uncorrelated, unit variance, normally distributed random variable U;. For
independent variables this is achieved by equating the cumulative distribution func-
tions of the input variable and its associated standard normal variate (as in Eqn. 2.11
for the environmental variables X; and X,). Correlation can be included by working
with conditional distributions [7] Alternatively if only the marginal distributions and
correlation coefficients among the Y; are known, we may proceed in two steps:

e With conventional methods, each Y; can be transformed marginally to a

11




12 Chapter 3. Solution Algorithm for Failure Probability

standard normal variable V;. The resulting V; variables will also be cor-
related, to a typically somewhat greater extent than the original physical
(non-normal) variables z;. Analytical methods have been developed to
efficiently predict this correlation “distortion” due to non-normal physical
variables [12].
e Correlation among the Vi’s may be removed by standard methods (e.g.,
Cholesky decomposition of the covariance matrix) to obtain standard no-
mal variables U;.
This is the approach used in CYCLES. All random variables are transformed in this
fashion and the calculations proceed in standard normal space, also called “normal”
or U-space.

The failure state function (eqn. 3.1) is evaluated in normal U-space and gradient
search methods are employed to find where it is closest to the origin, also known as
the design point. Approximation of the failure probability is obtained by fitting a
tangent line (in the first order reliability method, or FORM) or a parabola (in the
second order reliability method, or SORM) to the failure state function at the design
point. The direction cosines of the vector that defines the design point are relative
measures of the importance of each of the random variables. N

The symmetry of standard normal space simplifies the computation of the failure
probabilities and the importance factors. FORM probabilities are computed directly
from the length of the vector identifying the design point. SORM estimates of failure

probability are based upon the vector length and the curvatures of the surface at the

design point.




Chapter 4

Program CYCLES

The current features of the CYCLES program are:
1. Calculation of mean excess life
2. First order (FORM) and second order (SORM) failure probabilities
3. Importance factors for each random variable

4. Option to run simulation

4.1 Capabilities

The primary result of the CYCLES program is an estimate of the “failure” proba-
bility, py, i.e. the probability that the fatigue life will be less than the component’s
target service life. It is estimated as described in the preceding section. The impor-
tance factors, which reflect the relative contribution of each variable to fatigue life

uncertainty, are also reported.

4.2 Input Parameters

The program runs by default in the batch mode, in which input is read from the file
“cycles.in”. A sample input file is presented in Appendix A . This particular file is for

a wind turbine application described in the example section. Each line is commented

13




14 Chapter 4. Program CYCLES

to provide a functional description of the variables contained on that line. The input

is in free format, so the input file can contain the descriptive comments shown.

The first line contains default input and output file control parameters for code
execution. Of special interest to the user is the logical unit number for subsequent
input (IOIN). The value of IOIN=4, which is currently implemented, implies that.
the remaining input is read from “cycles.in”. A log file, “cycles.log,” is automatically
generated each time the program is run.

The second and third lines of “cycles.in” contain the number of random variables,
and number of fixed parameters respectively. These values do not need to be changed

under the current implementation of the fatigue life problem. The current version of
CYCLES runs with 14 fixed parameters and 24 random variables.
Lines 4 through 17 contain the values of the 14 fixed parameters. The first two

are the reference values of the environment variables used in the power-law fits of the
stress moments and the stress cycle rate. Line 6 and line 8 contain the distribution
types for X; and X», respectively. Lines 7 and 9 contain the number of quadrature
points for X; and X,, respectively. The numerical integration of Eqn. 2.5 over X: and
X, is performed over the two-dimensional grid of quadrature points specxﬁed Line
10 is the correlation coefficient, px, x,. Line 11 gives idist_s, the distribution index
which defines the distribution of S|X;, X2, from among any of the two-parameter
distributions in CYCLES 2.0 or the three-parameter, quadratic Weibull model. (Note
that the two-parameter forms are fit to only two moments. Hence the third moment

ps in Eqn. 2.1 is used only when the three-parameter, quadratric Weibull model is

selected.)

Line 12 is an integer variable: if this value is 0 then py is not estimated; G(X) is
only evaluated at the median values of the random variables, to give a rough estimate
of the median value of the safety margin. If this integer is non-zero then the full
fatigue reliability analysis is performed. Line 13 is another integer variable ISIGMA.
ISIGMA=0 indicates that the the second stress moment, /2 in Eqn. 2.1, is to be
mterpreted as the stress coefficient of variation; otherwise p» is assumed to be the
standard deviation of the stress range S. Lines 14 through 17 specify the bounding

values for the fitted stress moments. Note that line 15 specifies an upper bound for
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the stress COV even though ISIGMA#0.
Lines 18 through 41 are the required input for the 24 random variables used in
the formulation of fatigue damage and hence component lifetime. There is 1 line of

input for each random variable. This line is of the format
idist param_1 param_2 .... param.n

where n is the number of parameters required to define the distribution type idist
(see table of distribution types). The program has the capability to model each
random variable with one of twenty different probability distributions, as described
in Table 4.1.

The ordering of the random variables in the input file follows the same sequence
used in the description of the fatigue formulation from an earlier chapter. First are the
four parameters X1, Vxi, X3, Vx,, of the two-parameter distributions describing the
long term load variables, X; and Xo. These are followed by 12 variables that define
the power-law fits of the stress mean, standard deviation (or COV, if ISIGMA=0),
skewness and the stress cycles rate conditional on the environment variables, X; and
X,. The first three—a0Opm1, almi, and a?mz—are used with the fixed parameters Ty ref
and Ty, to compute the mean stress. Similarly, the other three sets of parameters
are used to find the stress COV, skewness and stress cycle rate. The stress is scaled by
the stress concentration factor SCF (with Goodman correction applied using SM and
SU) to get the stress at the fatigue-sensitive detail. The three stress moments—mean,
standard deviation and skewness—are then used to define the conditional distribution
for stress. Note again that only the first two moments are used if a two-parameter
distribution type is specified by the stress amplitudes.

The fatigué properties C and b, which define the S-N relation, are entered next
followed by the mean and ultimate stress used for the Goodman mean stress correc-
tion. The 227 234 and 24t* random variables scale the accumulated fatigue damage
and convert it to a failure time. The final variable is the target lifetime used to define
the failure state function, Eqn. 3.1.

Line 42 specifies the number of lines below that specify the degree of correlation

between any pair of the above 24 random variables. The value of the correlation
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Table 4.1: Distribution Types available in CYCLES2

Parameter Values

Dist# | Distribution Type | #1 #2 #3 #4
1 Normal Mean | Std. Dev.?
2 Log Normal Mean | Std. Dev.
3 ‘Exponential Mean
4 Weibull Mean | Std. Dev.
5 Gumbel Mean | Std. Dev.
6 Shifted Exponential | Mean | Dummy® Shift
7 Shifted Weibull Mean | Std. Dev. Shift
8 Quadratic Weibull | Mean Std. Dev. | Skewness
9 Shifted Quad. Weib. | Mean | Std. Dev. Skewness Shift
10 4-moment Hermite | Mean | Std. Dev. | Skewness | Kurtosis
21 Normal Mean COVe©
22 Log Normal Mean Ccov
23 Exponential Mean
24 Weibull Mean cov
25 Gumbel Mean Ccov
26 Shifted Exponential | Mean | Dummy Shift
27 Shifted Weibull Mean Cov Shift
28 Quadratic Weibull | Mean CoV Skewness
29 Shifted Quad. Weib. | Mean COov Skewness Shift
30 4-moment Hermite | Mean COV. Skewness | Kurtosis

aStd. Dev. denotes the standard deviation
bA dummy real real number is needed here simply for program consistency in

reading the input
¢COV denotes the coefficient of variation
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coefficient is between -1 and 1 and represents the degree of linear relationship between

any two variables. The input format of the correlation information on each line is

RVlingex RV2index PRVIRV2
For example, the correlation entry 5 8 -.63 indicates that the fifth and

the eighth random variables have a correlation of -63%. Only the non-zero correlation
values need to be specified.

The last four lines of input (lines 46 through 49) are four additional program con-
trol parameters. NPRI, line 46, is a print flag for the FORM algorithm. Permissible
values of NPRI are 0, 1, and 2, in order of increasing output. RELAX, line 47, can
be used to enforce slower time steps in the FORM algorithm by setting it equal to
a number greater than 0. This may be useful if the ordinary FORM gradient search
(" approximation” step in Section 2.2) fails to converge. IFORM, line 48, is used to
invoke the simulation option of the program. When set to any number other than zero
it performs Monte Carlo simulation until IFORM number of failures have occurred.
ISTART, line 49, sets the initial value of the U vector at which the FORM gradient
search begins. This is commonly taken to be the origin. Again, the user may seek to

modify this if convergence problems arise.

4.3 Description of Output

The results of the program calculations consist of four parts:
1. Echo of program input

2. FORM/SORM results: failure probabilities, reliability indices, and importance

factors

The next page shows the listing of the output from CYCLES corresponding to
the sample input file given here. The echo of program input is printed in the same
sequence in which the input was read. First are the program control parameters;
i.e., the number of random variables and parameters used in the formulation. There
are 14 parameters used in the current implementation. A brief summary of the 24

random variables follows, which includes the user-selected distribution types and their
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assigned parameters. Note that the output includes not only the input parameters
for each variable, but also the internally computed output distribution parameters
that are used throughout the execution of the program. The non-zero correlation
coefficients of the physical variables (input values) are echoed, together with the
internally computed normal U space correlation coefficients corresponding the above
non-zero correlation coefficients (See ”transformation” step discussed in Section 5).
Finally the program control parameters NPRI, RELAX, IFORM, and ISTART are
printed. Be aware that when the simulation option is invoked only a probability of
failure is computed and printed. The remainder of the output described here results
only when the FORM option is selected (IFORM = 0).

The results of the reliability analysis are the next items in the output file. A
representative value of the exéess life beyond the target life, T3, is printed first. This
value is obtained by substituting representative values (strictly, median values) for all
random variables into equation 8. This representative excess life, reported in units of
years, can be very useful when the CYCLES program is initially applied to a specific-
fatigue problem. An unrealistically small or negative value may suggest that some of
the input parameters are incorrectly defined, or at least that the specific algorithms
of FORM/SORM, which are best-suited to rare failure events, may not apply.

Following the excess lifetime are the details of the FORM/SORM solutions for
the failure probability. This includes the distance from the origin to the design point

" (known as BETAL1 for FORM, BETA2 for SORM), curvatures at the design point,
and the respective probabilities. The importance factors (squares of the direction
cosines of the design point vector) are also printed for each random variz{ble.

The final section of the program output are the result indicating the quadrature
points of X; and X, for which the maximum fatigue damage was incurred. The
corresponding the stress moments and the stress cycle rate at this quadrature points
are also indicated. "

Figures 4.1 and 4.2 show flow charts for the CYCLES computer code. The flow
chart in Figure 4.1 corresponds to the overall execution of the program. Figure 4.2
provides details of the initial subroutine INPUT, which provides initial processing of

the input random variables to obtain needed distribution parameters for subsequent
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Open Input/Output Files
Initialize Program Control Parameters

Y

Read in Input via
Subroutine INPUT

Simulation Simulation Safety Margin at
Analysis Run ? Starting Point
Y Y
Simulate until no. of Compute Reliability &
Failures Specified Found Importance Factors
Y Y

End

Figure 4.1: Flow Chart for Main Calling Program FORM

calculations.

4.4 Algorithm for Subroutine GRENZ

The following describes the algorithm for subroutine GRENZ to evaluate the G-
function in Eqn. 3.1
e The 24 physical random variables, Y;...Yas, are related to a correspond-
ing set U,...Uy of standard normal variables U;. The Y; include all the
necessary variables for the fatigue life calculation except E[S®| X1, X5].
e The mean damage per unit time, fm,gE[Sb], is required over a set of pairs
(z1,z2) of environmental variables (Eqn. 2.10). This is obtained as fol-

lows:
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Read # of Random Variables

\
Read # of Parameters

Y | Read Random Variables [~ 1
| Read Parameter Value A
Y
- Compute Output
v Distribution Parameters
All Yes
Parameters
Read? Y
Get Hermite
Correlation Coefficients

Y

= A | Write Distribution Type to idistv &
Distribution Parameters to dparmv

Compute Equivalent Normal
Correlation Coefficients

Y

Read Control Parameters
NPRI, RELAX, IFORM, ISTART Yes All . No
Random Variables
Read?
No
Read Initial U Vector
Yes |

Initial U Vector =0

Y
\
Return to FORM '

Figure 4.2: Flow Chart Subroutine INPUT
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e Given an z;, T, pair, find the stress statistics—mean, COV (or
standard deviation) , skewness, and cycle rate—from the power-
law fits (Eqn. 2.1 and Eqn. 2.3).
e From these moments and the assumed distribution type of S,
find the required distribution parameters for S | X1, Xo
e Using these distribution parameters for S| X1, Xa, estimate E[S®| X1, X5
e Once foyoFF [S?] has been obtained over all quadrature points, evaluate the
mean damage D from Eqn. 2.10, the target life Ty from Eqn. 2.8, and the
safety margin M (the output value of GRENZ) from Eqn. 3.1.
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Chapter 5

Application to Ship Fatigue

As noted earlier, the fatigue formulation established here may be of use in various ap-
plications; e.g., fatigue of aircraft, wind turbines, offshore structures, highway bridges
under vehicle loads, and so forth. In this section we show a specific application to
a fatigue-sensitive component of a marine vessel. An alternative application to wind

turbines is shown in the following section.

A body plan and a strip model of the ship are shown in Figure 5.1 and the main
particulars of the ship are given in Table 5.1. The cross-section of the.ship changes
along the length of the ship, with flared cross-sections at the ends of ship and box
cross-sections towards mid-ship (see Fig. 5.1b). A ship moving in the waves is sub-
jected to many kinds of loads: vertical and horizontal bending moments, torsional
moments, side shell intermittent water pressures, etc. In this example we consider only
the mid-ship vertical bending moments, and resulting mid-ship bending stresses, as
loads on the fatigue-sensitive ship component. The sagging condition causes tensile
stresses in the ship bottom. More details on this example can be found in Refer-

ences (4, 5].

We first review the underlying assumptions and numerical values used to model
(1) the load environment, (2) the stress response, and (3) the resulting fatigue damage

accumulation for a typical component of a marine vessel.

23
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Figure 5.1: Model of monohull ship that will be analyzed using stfip theory
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Table 5.1: Main Particulars of Ship presented in Fig. 5.1

Specification Value
Length between perpendiculars 166m
Beam 24.65m
Draught 8.85m
Weight 2x10° kN
Waterplane Area 2.84x10% sq.m

5.1 Load Environment

We assumé that the long-term environment can be characterized by one environment
variable X;. This could, for example, be the significant wave height Hg, describing the
steady-state ocean conditions over a 1-6 hour seastate. A distribution of X; should
then be chosen to describe the long-term variation of the climate along the ship route
(e.g., [1]). In this study, however, we instead choose the individual peak-to-trough
wave height, H, as the environment variable X1, and describe it by a long-term
Weibull distribution. Note here that H is a local wave height, defined as the distance
from the minimum wave surface elevation to the maximum elevation within each wave
cycle. With this definition, a wave cycle is described by the wave surface between two
mean upcrossings. Note that since we are not using the second environment variable
X, in this example, we have made nquadx2 = 0 in the input file.

In a short-term seastate with given Hg, we assume H to have Forristall distribution
(see [3]). Note that the ship fatigue analysis studies [4] have suggested that the
Forristall model predicts the simulated wave heights fairly accurately. This short-

term distribution function is given as

Fuus(h|hs) = Prob.[H < h] =1 — exp [—Q-l/—g.’i)?ilﬁ] (5.1)

in which o, = Hs/4. The long-term distribution function Frr(h) of wave heights can

be found from the conditional Forristall distribution, Fpgg, as

Fur(®) = [ Fipa (hlhs) s hs) ds 62
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in which fgg(hs) is the long-term distribution of Hg. To demonstrate the methodol-
ogy in this study, we assume Hg to have a Weibull distribution with mean E[Hs] = 3
meters and variance Var[Hg] = 3.6 m? [7]. The resulting long-term distribution
Fpr(h), which can be evaluated numerically from Eqn. 5.2, is in turn also approx-
imated by a two-parameter Weibull distribution form. The two parameters of this
Weibull distribution are calibrated to preserve the first two moments E[H.r] and

E[H?;] of the long-term wave heights. These moments can readily be found from the

conditional distribution as
E[Hyr) = Eu,|E|H|Hs)); E[Hir] = Ens[E[H ?|Hs]] (5.3)

where Ey,[] indicates taking expectation of random variable Hg. From these calcula-

‘tions we find the mean and the coefficient of variation (COV) of the long-term wave

heights to be:.

E[Hpr] = 1.81meters COV|[H_r| = 0.857

5.2 Gross Response

For this example, we use the nonlinear time domain analysis program NV1418 [2]
to find the stresses in random wave conditions. We select the seastate described by
Hg = 5m and Tp = 10s to analyze the ship response. Note that this is the most
damaging seastate according to a linear analysis [4]. For all wave heights in this one
hour seastate we find the corresponding sag bending moments in the response history.

A regression analysis was performed to fit the following functional form:
E[BM|H| = aH? (5.4)

It is common to take the logarithm of this relation, leading to a linear regression
problem for p and Ina. This is consistent with the view that the scatter (conditional
standard deviation) in bending moments is constant on log-log scale. (This is roughly

equivalent to the assumption that the bending moments BM, given different heights

H, have constant coefficients of variation.)
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Table 5.2: Estimated mean and standard deviation of the regression parameters
for bending moments (kN.m) given wave heights. The bending moments have been-
divided by 10°.

Parameter | Value
a 0.453
Oa 0.0284

D 1.168
Op 0.0404

Pap -0.972
OS|H 0.746

We find here, however, that the scatter in BM is more nearly constant on the
original linear scale; therefore, we seek to estimate a and p to minimize the sum-of-
squared deviations ¥;[BM; — aH?|?. Because a and p enter this sum in a nonlinear
fashion, their estimation requires nonlinear least-squares regression. For this purpose
we use the Levenberg-Marquardt method [9], as implemented in Gnuplot [11]. This
yiélds estimates of the parameters a, p, their standard errors oq, 0p of estimation, and
the correlation p,, between their estimates for this data set. These standard errors
reflect the uncertainty in the estimated parameters due to limited data. The resulting
parameters are shown in Table 5.2. Finally, we assume that the bending moment can
be converted to stresses by simply dividing by an appropriate section modulus, here

taken as 35 m3.

5.3 Numerical Values for Random Variables in Fa-
tigue Analysis

The input random variables in the example fatigue analysis and their values are given
in Table 5.3. The COV values in Table 5.3 should generally reflect the uncertainty in
the parameters either due to limited data or due to lack of knowledge. The parameters

relating stresses to wave heights are given in Table 5.2. To calibrate the median time
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Table 5.3: Numerical values of means and COVs of random variables and their

distribution types used in fatigue formulation. These are common to all three stresses:

sag, hog and range.
Variable Mean | COV | Dist.Type | Description

E[X,] | 181 (m)| 0.05 | Normal | Mean of Long-term H

COV[X4] 0.857 0.1 Normal | COV of long-term H
fo 0.1 (Hz) | 0.2 Normal | Stress cycle rate

SCF 2.5 0.1 Normal | Stress concentration factor
C 2.4x10% | 0.5 | Weibull | S-N factor
b 4 0 - S—-N exponent
A 0.02084 | 0.1 Normal | Damage threshold

to fail ff’f to a desired lifetime, we calibrate the mean value of A so as to have Tf = 200.

The example input and output files are presented in Appendix B. We find the
CYCLES analysis yields a failure probability of about 1.2% for a target lifetime of 20
years. The relative importance of the random variables shows that the most important
variable is the S—N factor C with about 77% importance. The next most important
factors are found to be the COV of the wave heights and the stress concentration
factor, followed by the mean wave height. Note that for the grid points specified, the

most damaging wave height is about 8.3 meters.




Chapter 6

Wind Turbine Application

A primary incentive for the development of the CYCLES fatigue reliability program
has been the fatigue problems facing the power industry with their wind turbine
components over the past several years. In particular we consider here the Advanced
Wind Turbines’ AWT-26 P2 prototype in Tehachapi, California for which data were
collected in 1994. This is a turbine with a downwind, two-bladed, free-yaw machine,
with 26 m diameter teetered rotor, and power rating of 275 kW [8,10]. They are
perhaps a typical example of data collected on prototype turbines during development
efforts around the world. These data are from a single location on the turbine—
the blade root flatwise bending—but could be from any component of loading with
fatigue damaging pétential. The data consist of over thirty hours of turbine operation
collected in ten minute segments.

Table 6.1 shows the number of ten minute samples that fall into each wind bin
divided over both wind speed and turbulence intensity, defined as standard deviation
of wind speed divided by mean wind speed. Wind speed runs from about 5 to 20 m/s
and turbulence intensity ranges from about 8 to 30%, although most of the samples
fall on the lower half of that range.

The moments of the rainflow-range amplitudes were calculated for all the 30-
plus hours of data. Figures 6.1, 6.2 and 6.3 show the results for the mean, COV,
and skewness, respectively, across all the bins in Table 6.1. There appears to be an
upward, approximately linear trend of the mean with wind speed, a mild tendency

for COV to decrease with wind speed, and no particular trend of skewness with wind

29
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Table 6.1: Number of 10-minute samples as a function of mean wind speed V (m/s)

and turbulence intensity I for the 10-minute samples

14 Turbulence Intensity I
0.095 | 0.125 | 0.155 | 0.185 | 0.215 | 0.245 | 0.275 | 0.305
5.48 0 0 0 2 3 1 0 1
7.49 0 0 1 14 5 1 0 0
9.50 0 0 10 17 5 0 0 0
11.51 5 7 31 16 5 2 0 0
13.52 8 9 13 7 3 0 0 0
15.53 0 2 0 0 0 0 0
17.54 3 9 0 0 0 0 0
1956 | 4 4 0 0 0 0 0

speed.
Moment behavior as a function of wind conditions is illustrated by a standard

regression fit of the moment data over the two dimensional space of wind speed, V

(=X1), and turbulence intensity, I (=X), with the following functional form.

T (L3 ¥ T a2i
en(2)(2)
xlref m2ref

where p;, fori = 1,2, 3 refer to the mean, standard deviation (or COV), and skewness
of the stresses, respectively. X1 rer and Xa rer are the reference values for the indepen-
dent variables z; and z, respectively. We choose the reference values as the geometric
mean values found from the data; for example, in terms of the individual mean wind
speeds, V;, observed in each 10-minute segment. In this example X1 rer=11. 35m/s,
and the analogous geometric mean of the turbulence intensity is X2 rer=0.157. By
using these geometric means to normalize our fit, we achieve uncorrelated estimates
of the parameters agi, @1, and az;. Note that we do not bin the 10-minute results to
perform a weighted regression analysis as was done in Reference [10]). Rather each of
the 10-minute outcomes (wind speed and turbulence intensity) and the corresponding

load moments are treated individually in the regression analysis. This results in slight
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Table 6.2: Regression parameters for load amplitude moments vs. wind speed V

and turbulence intensity I

Moment Parameter | Mean | Sigma
Mean (p1) ap1 0.253 | 0.003
an 0.974 | 0.053

Qs 0.346 | 0.060

COV (p2) ag2 1.117 | 0.004
ae -0.190 | 0.017

a2 0.163 | 0.020

Skewness (u3) ao3 1.788 | 0.013

a3 -0.201 | 0.038
a3 -0.005 | 0.043
Cycle Rate (favg) fo 6.635 | 0.022
fi 0.191 | 0.017
fa -0.096 | 0.019

differences in the estimated mean and standard deviation of the regression parameters
as found here (see Table 6.2) versus Reference [10].

The rate at which cycles are accumulated is also an important quantity in con-
ducting a fatigue analysis. The cycle rate can be treated just like the moments of
the load amplitudes in the previous section. Figure 6.4 shows the AWT cycle rate
data plotted versus wind speed. Again, for this response quantity, there is minimal
dependence on I, and significant dependence on V. However, the relative size of the
change in cycle rate with wind speed is small enough (£15%) that variations in the
rate will have a minimal effect on lifetime estimates. ’

As described in the general fatigue formulation there are three distinct aspects
of the fatigue perfomance of a structure. They are the characterization of the load,
the structural response to that load, and a failure criterion which in this case is
analogous to the fatigue properties of the material being used. The details of the site

wind conditions, the power-law fit and the S — N material properties can be found,
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moment (load amplitude skewness) measurement from the AWT
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for example, in References [6,10].
The input file for this example is provided in Appendix A and the remaining

parameters for the reliability formulation can be found in this input file.

The output from the CYCLES analysis for the wind turbine is also given in Ap-
pendix A. This example results show a probability of failure of approximately 1.1%
for a target lifetime of 20 years with a median lifetime of 508 years. Of equal interest
is the relative importance of each random variable on the fafigue life of the turbine.
Results show that the leading coefficient in the S-N relationship is the most impor-
tant source of variability, supplying about 85% of the total variability in this example.
The turbulence intensity is next with approximately 10% contribution, followed by
the mean wind speed, the COV of the turbulence intensity, and the turbulence in-
tensity exponents for the mean stress and stress COV power-law fits. The relative

importance of each random variable provides valuable insight to the designer who is

attempting to reduce the effects of fatigue damage.
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Sample Input File from Wind Example: cycles.in

Line Input Values Descriptive Comments
1 4 7 6 6 H TI0IN,IOOUT,NINTER,NOUTER
2 24 H NVAR
3 14 H NPARM
4 11.361 s 1 X1iREF: Fixed Parameters 1...NPARM
5 0.157 ;2 X2REF:
6 4 ; 3 jdistxl
7 10 HE nquadxi
8 2 ) idistx2
9 10 ; 6 nquadx2
10 0.0 4 Correlation (X1, X2)
11 2 ; 8 idist response given X1,X2 (any 2-param dist.+QWeib)
12 1 H ] =0: Evaluate G-Function once at mean values of param.s
13 0 ; 10 isigma=0 -> stress moment m2 is COV, else m2 is std.dev
14 10.0 ; 11 Max mean stress
16 1.6 : 12 Max stress COV
16 3.0 ; 13 Max stress skewness
17 -0.5 ; 14 Min stress skewness 1...NVAR
18 21 7.5 0.075 ;1 X1AVG:  N{mu,cov) Random Variables
19 24 0.56 0.075 ;2 X1COV:  W(mu,cov)
20 21 0.16 0.075 ) X2AVG: N(mu,cov)
21 24 0.22 0.075 ; 4 X2C0V: W(mu,cov)
22 1 0.263 0.003 ; B a0_mi: N(mu,sig) stress mean
23 1 0.974 0.053 ; 6 al_mi: N(mu,sig)
24 1 0.346 0.060 3 7 a2_mi: N(mu,sig)
26 1 1.117 0.004 ; 8 a0_m2: N(mu,sig) stress COV
26 1 -0.190 0.017 ;9 al_m2: N(mu,sig)
27 1 0.163 0.020 ; 10 a2_m2: N(mu,sig)
28 1 1.788 0.013 ;11 a0 _m3: N(mu,sig) stress skewness
29 1 -0.201 0.038 s 12 al_m3: N(mu,sig)
30 1 -0.006 0.043 ; 13 a2_m3: N(mu,sig)
31 1 6.636 0.022 ; 14 a0_10: N(mu,cov) stress cycle rate
32 1 0.191 0.017 ; 16 al_f0: N(mu,sig)
33 1 -0.096 0.019 ; 16 a2_10: N(mu,sig)
34 21 1. 0. ; 17 SCF: N(mu,cov)
35 24 2.420D16 0.7 ; 18 C: W(mu,cov)
36 21 8. 0. ; 19 B: N{mu,cov)
37 1 0. 0. ; 20 SM: N(mu,sig)
38 21 8b6.0 0. ; 21 SuU: N(mu,cov)
39 21 1. 0. ;22 DELTA: N(mu,cov)
40 21 1. 0. ; 23 AVAIL: N(mu,cov)
41 21 20. 0. ; 24 TARLF: N{(mu,cov)
42 3 ; Number of lines containing correlation coeff.
43 b5 8 -.63 ; Correlation Coefficients
44 B 11 -.64 ; Correlation Coefficients
4 8 11 .34 ; Correlation Coefficients
46 0 H NPRI  (FORM printing index)
47 0 ; RELAX (=0 for ordinary FORM; >0. for slover steps)
48 0 H IFORM (=0 for FORM, else simulate IFORM failures)
49 0 H ISTART (=0 Start at mean; else read in starting vector)




Sample Output File from Wind Example: cycles.out

NUMBER OF RANDOM VARIABLES: 24
NUMBER OF PARAMETERS: 14

Parameter Value

1 11.35

2 0.1570

3 4.000

4 10.00

5 2.000

6 10.00

7 0.

8 2.000

9 1.000

10 0.

11 10.00

12 1.500

13 3.000

14 -0.5000

Variable # Dist # Parm # 1 Parm # 2 Parm # 3 Parm # 4

X1AVG 21 7.500 0.7500E-01 0. 0.
7.500 0.5625 0. 0.

X1icov 24 0.5600 0.7500E-01 0. 0.
0.5600 0.4200E-01 16.41 "'0.5783

X2AVG 21 0.1500 0.7500E-01 0. 0.
0.1500 0.1125E-01 0. 0.

X2C0vV 24 0.2200 0.7500E-01 0. 0.
0.2200 0.1650E-01 16.41 0.2272

a0_mi 1 0.2530 0.3000E-02 0 0.
0.2530 0.3000E-02 0 0.

al_ml 1 0.9740 0.5300E-01 0 0.
. 0.9740 0.5300E-01 0 0.

a2_ml 1 0.3460 0.6000E-01 0 0.
0.3460 0.6000E-01 0 0.

a0_m2 1 1.117 0.4000E-02 0 0.
‘ 1.117 0.4000E-02 0 0.

al_m2 1 -0.1900 0.1700E-01 0 0.
-0.1900 0.1700E-01 0 0.

a2_m2 1 0.1630 0.2000E-01 0 0.
0.1630 0.2000E-01 0 0.

a0_m3 1 1.788 0.1300E-01 0 0.
1.788 0.1300E-01 0 0.

al_m3 1 -0.2010 0.3800E-01 0 0.
-0.2010 0.3800E-01 0 0.

a2_m3 1 -0.5000E-02 0.4300E-01 0 0.
-0.5000E-02 0.4300E-01 0 0.
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a0_f0
al_f0
a2_f0

SCF

SH

DELTA
AVAIL

TARLF

»=x CORR [

RX 8 -RX 5
RX 11 - RX §
RX 11 - RX 8

Appendix A. Sample Input and Output Files for Wind Example

21

24

21

1

21

21

21

21

6.635
6.635
0.1910
0.1910
~-0.9600E-01
-0.9600E-01
1.000
1.000
0.2420E+17
0.2420E+17
8.000
8.000

0.

0.
85.00
85.00
1.000
1.000
1.000
1.000
20.00
20.00

0.2200E-01
0.2200E-01
0.1700E-01
0.1700E-01
0.1900E-01
0.1900E-01

0.

0.
0.7000
0.1694E+17 1.4

OO O OO OO

1

_O0.0000000000

Xi, Xj 1 = CORR MATRIX OF PHYSICAL VARIABLES *x*

~0.6300
-0.6400
0.3400

Ui, Uj 1 = CORR MATRIX OF

*x CORR [

RX 8 -RX b5 =
RX 11 - RX 5 =
RX 11 - RX 8 =

-0.6300
-0.6400
0.3400

FORM PRINT INDEX (0,1, or 2):
FORM PARAMETER (O=normal)

NUM OF SIMULATIONS? (O=FORM):
START FORM AT MEAN? (O=yes):

safety margin at starting point:

* %k

form:
sorm:

beta

2.325
2.294

e[s"b]: O

failure prob *x*

0.1005E-01
0.1091E-01

GAUSSIAN VARIABLES **

OO OO

0.48855E+03

.129292E+07

OO0 O0OO0OO0OOOO

o

0.2669E+17

.0.00000000000



number of iterations:

DESIGN POINT

DELTA
AVAIL
TARLF

Maximum damage occured at X1
Maximum damage occured at X2

-~

.581E+00
.671E-01
.582E-01
.258E-01
.531E-01
.T14E-01
.602E-01
.117E+00
.914E-01
.697E-01
.788E+00
.010E-01
.000E-03
.635E+00
.910E-01
.682E-02
.000E+00
.556E+15
.000E+00
.000E+00
.500E+01
.000E+00
.000E+00
.000E+01

o]

1
= O NN = WO NN

N = =00 O 00 = =

OO O0OO0OOONOUOUMBEOOOWO®EN

BN NN W

U

.435E-01
.840E-02
.315E-01
.432E-01
.396E-02
.851E-02
.371E-01
.132E-01
.391E-02
.359E-01
.000E+00
.000E+00
.000E+00
.061E-03
.948E-03
.391E-03
.000E+00
.144E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00

At this X1 & X2 moments of

Mean stress

Std. Dev. of stress
Skewness of stress
cycle rate of stress

AU
-0.062
-0.017
-0.315
-0.105
-0.010

0.021
-0.102
-0.049
.036
.145
.000
.000
.000
.002
.001
.004
.000
.922
.000
.000
.000
.000
.000
.000

0000000000000 O0 OO0

9.247
0.214

stress are:
0.232
0.284
1.860
6.194

AU**2

CO0OO0O0OO0O0OO0O0O0OO0ODO0O0DO0OOO0OO0OOO0OOO0O0O0O0

.004
.000
.099
.011
.000
.000
.010
.002
.001
.021
.000
.000
.000
.000
.000
.000
.000
.850
.000
.000
.000
.000
.000
.000

*okk

. skokaokoR Rk
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Sample Input File: cycles.in

4 7 b 6 H I0IN,IO0UT,NINTER,NOUTER
24 H NVAR
14 : NPARM
1.0 ; 1 X1iREF: Fixed Parameters 1...NPARM
1.0 ;2 X2REF:
4 ; 3 idistx1
10 ; 4 nquadx1
1 ; 6 idistx2
0 ; 6 nquadx2
0.0 ; 7 Correlation (X1, X2)
4 ; 8 idist response given X1,X2 (LN=2,22,W=4,24,else QW)
1 ; 9 =0: Evaluate G-Function once at mean values of param.s
i ; 10 isigma=0 -> stress moment m2 is COV, else m2 is std.dev
1.e20 ; 11 Max mean stress
1.5 ; 12 Max stress COV
1.e20 ; 13 Max stress skewness
-0.5 ; 14 Min stress skewness 1...NVAR
21 1.81 0.05 ;1 X1AVG: N(mu,cov) Random Variables
21 0.857 0.1 ; 2 X1COV: W{mu,cov)
1 0.0 0.0 ;3 X2AVG: N(mu,cov)
i1 0.0 0.0 ; 4 X2C0V: W(mu,cov)
21 1.294 0.06267 A ) a0_mi: N(mu,sig) stress mean
1 1.168 0.0404 ; 6 al_mi: N(mu,sig)
1 0.0 0.0 ;3 7 a2_mi: N(mu,sig)
1 2.1314 0. ; 8 a0_m2: N(mu,sig) stress sigma
1 0.0 0.0 ; 9 al_m2: N(mu,sig)
1- 0.0 0.0 ;. 10 a2_m2: N(mu,sig)
1 0.1 0.0 ;11 a0_m3: N(mu,sig) stress skewness
1 0.0 0.0 ;12 al_m3: N(mu,sig)
1 0.0 0.0 ; 13 a2_m3: N(mu,sig)
21 0.1 0.2 ; 14 a0_f£0: N(mu,cov) stress cycle rate
1 0.0 0.0 ; 16 al_10: N(mu,sig)
1 0.0 0.0 ; 16 a2_10: N(mu,sig)
21 2.5 0.1 ; 17 SCF: N(mu,cov)
24 2.4D16 0.5 ; 18 C: W(mu,cov)
21 4. 0. ; 19 B: N(mu,cov)
1 0. 0. ;20 SM: N(mu,sig)
21 85.0 0. ; 21 SU: N(mu,cov)
21 0.02084 0.1 7 22 DELTA: N(mu,cov)
21 1. 0. ; 23 AVAIL: N(mu,cov)
21 20. 0. ; 24 TARLF:  N(mu,cov)
1 ; Number of lines containing correlation coeff.
5§ 6 -.97 ; Correlation Coefficients
0 : NPRI  (FORM printing index)
0 ; RELAX (=0 for ordinary FORM; >0. for slower steps)
0 ; IFORM (=0 for FORM, else simulate IFORM failures)
0 H ISTART (=0 Start at mean; else read in starting vector)




Sample Output File: cycles.out

NUMBER OF RANDOM VARIABLES: 24
NUMBER OF PARAMETERS: 14
Parameter Value
i 1.000
2 1.000
3 4.000
4 10.00
5 1.000
6 0.
7 0.
8 4.000
9 1.000
10 1.000
11 0.1000E+21
12 1.500
13 0.1000E+21
14 -0.5000
Variable # Dist # Parm # 1 Parm # 2 Parm # 3 Parm # 4
X1AVG 21 1.810 0.5000E-01 0. 0.
1.810 0.9050E-01 0. 0.
X1cov 21 0.8570 0.1000 0. 0.
0.8570 0.8570E-01 0. 0.
X2AVG i 0. 0. 0. 0.
0. 0. 0. 0.
X2Ccov 1 0. 0. 0. 0.
0. 0. 0. 0.
al0_mi 21 1.294 0.6267E-01 0. 0.
1.294 0.8109E-01 0. 0.
al_mi 1 1.168 0.4040E-01 0. 0.
: 1.168 0.4040E-01 0. 0.
a2_mi 1 0. 0. 0. 0.
0. 0. 0. 0.
a0_m2 1 2.131 0. 0. 0.
2.131 0. 0. 0.
al_m2 1 0. 0. 0. 0.
0. 0. 0. 0.
a2_m2 1 0. 0. 0. 0.
0. 0. 0. 0.
a0_m3 1 0.1000 0. 0. 0.
0.1000 0. 0. 0.
al_m3 1 0. 0. 0. 0.
0. 0. 0. 0.
a2_m3 1 0. 0. 0. 0.
0. 0. 0. 0.
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a0_f0 21 0.1000 0.2000 0. 0.

0.1000 0.2000E-01 0. 0.

al_f0 1 0. 0. 0. 0.

0. 0. 0. 0.

a2_f0 1 0. 0. 0. 0.

0. 0. 0. 0.

SCF 21 2.500 0.1000 0. 0.

2.500 0.2500 0. 0.

c 24 0.2400E+16 0.5000 0. 0.
. 0.2400E+16 0.1200E+16 2.101 0.2710E+16

B 21 4.000 0. 0. 0.

4.000 0. 0. 0.

SM 1 0. 0. 0. 0.

- 0. 0 0. 0.

su 21 85.00 0. 0. 0.

85.00 0. 0. 0.

DELTA 21 0.2084E-01 0.1000 0. 0.

0.2084E-01 0.2084E-02 0. 0.

AVAIL 21 1.000 0. 0. 0.

1.000 0. 0. 0.

TARLF 21 20.00 0. 0. 0.

20.00 0. 0. 0.

»* CORR [ Xi, Xj ] = CORR MATRIX OF PHYSICAL VARIABLES *x*
RX 6 - RX 5 = -0.9700

#% CORR [ Ui, Uj ] = CORR MATRIX OF GAUSSIAN VARIABLES *x

RX 6 - RX 5 = -0.9700

FORM PRINT INDEX (0,1, or 2): 0.
FORM PARAMETER (O=normal) 0.
NUM OF SIMULATIONS? (O=FORM): 0.
START FORM AT MEAN? (O=yes): 0.
safety margin at starting point: 0.17996E+03

e[s"b]: 0.192558E+03

*x beta failure prob **

form: 2.282 0.1123E-01
sorm: 2.256 0.1205E-01

number of iterations: 6

DESIGN POINT




DELTA
AVAIL
TARLF

NP NOO B BNOOHOOROONOREKE OO

.842E+00
.170E-01
.000E+00
.000E+00
.286E+00
.173E+00
.000E+00
.131E+00
.000E+00
.000E+00
.000E-01
.000E+00
.000E+00
.066E-01
.000E+00
.000E+00
.664E+00
.499E+14
.000E+00
.000E+00
.500E+01
.047E-02
.000E+00
.000E+01

U
3.544E-01
6.998E-01
0.000E+00
0.000E+00

-9.453E-02
1.209E-01
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
3.278E-01
0.000E+00
0.000E+00
6.551E-01

-2.001E+00
0.000E+00
0.000E+00
0.000E+00

-1.788E-01
0.000E+00
0.000E+00

[
o O

!
CO0O 0000000000000 O0OO0OOO0O

Maximum damage occured at X1 =

Maximum damage occured at X2

At this X1 & X2 moments of

Mean stress

Std. Dev. of stress
Skewness of stress
cycle rate of stress

stress are:

15
2
0
0

AU

.155
.307
.000
.000
.041
.053
.000
.000
.000
.000
.000
.000
.000
.144
.000
.000
.287
.876
.000
.000
.000
.078
.000
.000

8.374
1.000

.5565
.131
.100
.107

*k,
Rk,

nokok

L AR kK
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